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ABSTRACT

High resolution numerical simulations of thermal convection in a rap-

idly rotating channel with gravity perpendicular to the rotation vector are
described. The convecting columns are subject to a B-effect resulting from

cross-channel topographic vortex stretching. The symmetries of the prob-

lem allow many invariant wavenumber sets, and this property is associated

with the existence of stable multiple-equilibria at modest supercritical-

ity. The transition to chaotic behavior involves the production of inter-
mittent unstable orbits off a two-torus in energy space. At very high Ray-

leigh number (of order 10 6 to i0_) the motion can be turbulent, depending on

the size of B. However, the turbulence is usually characterized by an

almost-periodic formation of patches of small scale convection that cause

regular pulsations in the accompanying strong zonal jets. The processes

maintaining these flows may be related to those responsible for the zonal

currents on Jupiter and for cyclic variability on the Sun.
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O. OVERV_

The Geophysical Fluid Flow Cell (GFFC) experiment is scheduled to fly

on board the USML-2 mission in September 1995. In support of this flight,

and to generate ideas for experiments to be conducted, we have carried out

an extensive modeling study of thermal convection confined to an equato-

rial annulus. This is a reasonable model for the nonlinear dynamics of

quasi-two-dimensional "banana" cells, i.e. the convection modes observed on

the SL-3 flight of the GFFC. Of great interest are the questions of how the

banana cell states become chaotic, whether or not mean zonal flows can be

generated, and what the nature of the turbulent states are. To this end we

have constructed models that are relatively simple to integrate 1(as

opposed to GCM type simulations that are out of the question for the GFFC
parameter ranges and timescales). This report describes the major modeling

results, and focuses on interesting discovery of exotic pulsating turbulent

states that will be sought during the USML-2 mission.

i. INTRODUCTION

One of the outstanding problems in geophysical fluid dynamics is the

origin of zonal winds on the giant planets and differential rotation on the

Sun. Busse (1976, 1983) proposed that the Taylor-Proudman constraint asso-

ciated with a strong basic rotation would cause the interior motions of

rapidly rotating planetary atmospheres to be invariant along the rotation

axis. In Boussinesq gas or liquid models the resulting two dimensional con-

vecting columns were found to be subject to a number of secondary instabil-

ities (Or and Busse, 1987, hereafter OB87, for free boundaries; Schnaubelt

and Busse, 1991, Schnaubelt, 1992, for rigid boundaries). One is a mean

flow instability in which convecting columns, tilting in the zonal and

radial directions, produce Reynolds stresses that generate a zonal shear

flow. This zonal shearing motion is capable of further tilting the cells,

leading, in principle, to large mean flows as the dissipation is reduced.

A crucial effect in Busse's model is the stretching, by the curvature

of the planetary atmosphere, of radially displaced convecting columns
aligned with the rotation axis. The standard model configuration is an

equatorial annulus or zonally periodic channel with sloping ends and grav-

ity perpendicular to the basic rotation vector (figure i). The slopes gen-
erate a topographic E-effect which provides a mechanism for travelling

Rossby waves, as well as a tendency for chaotic behavior at modest Rayleigh

number. In this paper we study the spontaneous generation of strong zonal

jets at high Rayleigh number. If _ is either too small or too large, the

motions are either lack such jets, or are stable altogether. We call the

intermediate regime, with dominant zonal currents and various forms of

turbulence, _ - convection. Although the geometry and vertical structure

of the Boussinesq model is highly simplified, the results are relevant to

scaling arguments of Ingersoll and Pollard (1982) for deep convection on

the giant planets. These order of magnitude estimates rely, in part, on the

low Rayleigh number computations of Lipps (1971) for ordinary 2-D convec-

tion in an imposed shear flow. As the presence of vortex stretching associ-
ated with the _-effect can have a dramatic influence on the structure of

both low and high Rayleigh number situations, it is of interest to charac-
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terize the possible states through a sequence of numerical experiments.

Thompson (1970) proposed a type of mean flow instability as an explana-

tion of the 4-day retrograde rotation of the Venusian atmosphere. His

model was criticized by Lilly (1971) who argued .that on Venus there is no

constraint to guarantee pure transverse convecting rolls that have the
necessary strong interactions with a zonal shear flow. In the Busse sce-

nario such a constraint is provided by the basic rotation. Laboratory

experiments on Boussinesq-liquid spherical shells using outward centrifu-

gal buoyancy (Carrigan and Busse, 1983) and electrostatic radial buoyancy

(Hart et. al, 1986) confirmed the validity of this idea over a fairly wide

range of Rayleigh and Taylor numbers. However, the latter study showed

that increasing the Rayleigh number at fixed Taylor number invariably leads

to a breakdown of the columnar "banana cell" convection as the Taylor-
Proudman constraint is modified by buoyancy forces parallel to the basic

rotation vector. The breakdown first occurs at high latitudes, then gradu-

ally erodes down into the equatorial banana cell region as the Rayleigh

number increases. Thus one question is whether or not there is a parameter
range for _-convection with very strong mean zonal flows and self-consis-

tency in the sense of low local Rossby number and negligible thermal winds.

There have been a number of studies of the evolution of columnar _-con-

vection with increasing Rayleigh number, addressing the question of the

transition from steadily propagating thermal Rossby waves, which arise at

the linear stability boundary for the onset of convection, to more compli-

cated spatio-temporal forms. For application to planetary atmospheres and

the solar rotation problem, a model should produce a relatively large zonal
flow in which the columnar convective eddies do not dominate the total

streamfields. For example, the data from Voyager (Ingersoll, et al., 1981)
show fluctuating velocities at cloud levels on Jupiter which are consider-

ably smaller than the zonal-mean jet speed at most latitudes. However, all

the weakly nonlinear models of _-convection constructed to date have eddy
kinetic energies either far exceed the zonal means. Highly truncated

models have been pushed to large Rayleigh number where rough equivalence
can be found, but the use of low truncation at high supercriticality is sus-

pect. In both cases strong regular-wave patterns at modest wavenumber are
found that are not easily associated with features imbedded in the clouds

on the giant planets, nor in photometry or helioseismology of the solar

atmosphere. All these objects nonetheless boast a strong latitudinally

varying differential zonal rotation (Howard and Harvey, 1970, Ingersoll et

al., 1981).

Lin, Busse and Ghil (1989), hereafter LGB89, used a perturbation method

to study mode mixing and transition, ostensibly near the neutral curve for

linear instability. Their model predicted two '_ultiple" states with the

same waveset symmetry but differing amo_ts of zonal cell tilt with radius.
Transition to chaotic time dependence was via a peri_ doubling cascade at

near-critical Rayleigh number. Lin (1990) used a truncated Fourie_ expan-
sion to suggest that the convecting column system might be subject to a

sideband "double column" instability in which rows of like-sign vortices

would align permanently on the same side Of _emodel chinnel, leading to

large mean flows at modest Rayleigh numbers. A period doubling cascade was

predicted at low supercriticality in this latter work as well. It is not



-5-

clear that these results are robust with respect to model truncation. The
well-known failure of severely truncated models of two-dimensional con-
vection and baroclinic instability to predict the outcome of highly
resolved simulations at even modest supercriticality has motivated us to
revisit the thermal Rossby wave problem. In our high resolution calcula-
tions we find significant differences in the transition scenario compared
to the low-order models, as well as some unusual turbulent states. There
are internally-consistent turbulent regimes with large zonal jets that may
either be quasi-steady or almost-periodic, depending on _.

The rest of this report is organized as follows. The basic model equa-
tions and numerical methods are summarized in section 2. Section 3
describes our results on multiple equilibria and the transition to chaos.
Section 4 presents data from a number of runs at large Rayleigh number with
various values of the _ parameter. Our main conclusions are summarized in
section 5.

2. MODEL EQUATIONSANDMETHOD

Our central motivation is to shed light on the nonlinear dynamics of

_-convection in the simplest geometry that has been universally used in the

previous modeling studiesmentioned above. The basic model is derived for

flow of a Boussinesq liquid in a rectilinear channel whose cross-section is

shown in figure I. The governing equations are obtained by perturbing off a

state of g_eostrophic balance (Busse and Or, 1986). The Rossby number for
the flow, U/2flD or, as an even stronger condition, e*/2_, is assumed small.

Here U is the rms flow speed in the x-y plane, fl is the basic rotation rate,
D the channel width, and _* is the local vertical vorticity. The motions

are then essentially two-dimensional in the x-y plane and controlled by the

quasi-geostrophic vorticity equation (c.f. Pedlosky, 1987), with the one
addition that zonal (x) variations of the relatively weak y-directed buoy-

ancy forces can generate '_vertical" vorticity (i.e. vorticity aligned with

the rotation axis). In order to maintain horizontal non-divergence of the

lowest order velocity field in the x-y plane, the component of buoyancy in

the y-direction is assumed small compared with the Coriolis deflection of
the zonal u velocity. The thermal winds associated with horizontal temper-

ature gradients and the component of gravity along the axis of rotation

that would be present in a spherical atmosphere are neglected. In order to

be self-consistent with lowest order geostrophy, the nonlinear vortex

stretching term in the vertical vorticity equation is neglected with res-

pect to planetary vortex stretching. These scaling assumptions are re-

examined a' posteriori in section 5. Finally, while topographic slopes are

used to generate a _-effect, all the boundaries are assumed to be free-

slip. If the sloping surfaces are almost flat, the lowest order fields do

not require Ekman layers to adjust the normal shear of the horizontal velo-
cities at these surfaces to zero. Thus there will be no Ekman suction damp-

ing, and lateral diffusion of heat and momentum is the only dissipative
mechanism included.

When lengths are scaled by D, velocities by _D-', temperature relative

to a background conductive state by _-'AT, and time by D2_TM , the governing

vorticity equation and the heat equation become (following LBG89) :
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+ J(#,_) - B _ =- Ra _ + V2_at ax ' (i)

Pr {a_t +J(#'T)} =v2T- @@ax' (2)

with

= V2_ , (3)

u = - a_ (4)
ay

and

v = _/ (5)
aX "

The parameters are defined by:

Prandtl number Pr m _ , (6)
K

Rayleigh number Ra m gaATD3
KP

, (_)

- parameter _ m _ji_n-_ (8)
I_

Here a is the coefficient of thermal expansion, _ the kinematic viscosity,

and _ the thermal diffusivity. Other parameters are defined in figure i.

This paper studies flow regimes in the Ra - _ plane at a fixed value of Pr =
1.0.

The _ parameter as given in (8) is related to the topographic slopes in

figure I, which in turn follow from extracting a slot from a full sphere

and assuming thatthe motions extend along the axis of rotation all the way
throughthe interior. This was the canonical view proposed by Busse (1983).

However it is important to observe that eqn. (8) is identical in magnitude

to the _ parameter obtained for shallow to moderately deep convection

between spherical shells separated by a distance H, measured along the axis

of rotation, when H is small compared to a full sphere radius Rs. Under the

local slope approximation for a slot of width D intersecting the surface of

a sphere of radius Rs at latitude 8, the ratio ofthe change in depthacross

the slot tothe average depth is

G - _h = _ = PC_os(0) (8')

, , { "}RsSin '(o) I _sin(O)
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where the last term in brackets is absent for columnar convection extending

all the way through. Since the column length L (or H) only appears in 8, the

results for a given _ apply equally to shallow or moderately deep as well

as to full interior-crossing Boussinesq convection.

The above system is solved numerically by a pseudospectral algorithm.

The expansion functions are chosen such that stress-free, impermeable, and

infinitely conducting boundary conditions are satisfied on the vertical

walls at y= 0 and y = I. We write:

_ #m,n sin(n_y) exp(imx) , (9)4 = /. /i

m=O n=l

T = /_ /_ Tm, n sin(n_y) exp(imx) , (i0)

m=O n=l

Then, the boundary conditions mentioned above,

# = _ =T= 0 at y= 0,i,
_y2

and periodic zonal boundary conditions are automatically satisfied. The

above representation assumes that the zonal periodicity length is 2_ times

the channel width. This particular aspect ratio is maintained throughout

the paper. The solutions are affected if the aspect is significantly

smaller so that the lowest wavenumber corresponds to tall thin cells.

Linear stability analyses of finite-amplitude E-convection in an infinite

channel (Schnaubelt, 1992) predict sideband instabilities with maximum

growth rates for wavenumbers corresponding to m = 1 in a 2_ long channel.
Thus our choice of this particular aspect ratio is expected to capture the

essential physics of flows in longer channels while maximizing computa-

tional efficiency.

The numerical method is a Fourier spectral collocation scheme based

upon a truncation of (9) and (i0). The variables # and T of configuration

(physical) space are mapped back and forth into the coefficients #m.n and
Tm n of spectral space using fast Fourier transforms. The time integration
of'equations (i) and (2) is performed semi-implicitly. An implicit Crank-

Nicolson formulation (Smith, 1965) is used for the linear terms, whereas an

explicit three-level Adams-Bashforth scheme (Richtmyer and Morton, 1967)
is adopted for the nonlinear terms. The Crank-Nicolson step is uncondi-

tionally stable and therefore the timestep for the linear parts is

restricted solely by requirements of accuracy. However, the explicit

scheme for the nonlinear parts requires a timestep that satisfies the Cour-

ant-Friedrichs-Lewy condition for numerical stability.

Products of the variables are evaluated in configuration space to

avoid computationally expensive convolution sums of the phase space vari-

ables. However, all other calculations are carried out in phase space,
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where derivatives reduce to simple multiplications by powers of the waven-

umbers. Aliasing errors are removed using the so-called 2/3 dealiasing
rule. The pseudospectral code allows initial conditions to be random fluc-

tuations in any required wavenumber set, or the results of a previous simu-

lation. It was thoroughly tested against linear analysis, simple nonlinear

examples, and (by setting B s 0) against previous two-dimensional Rayleigh-

Benard results (e.g. Moore and Weiss, 1973). The results presented below
are believed to be convergent on the basis of obtaining quantitatively sim-

ilar solutions at double the spatial resolution. The higher Rayleigh

number runs used 256 (x) and 65 (y) modes. A typical run of 200,000 times-

teps takes about a day on an IBM RS6000-320 workstation, or a couple of
hours on a CRAY-YMP.

3. MULTIPLE STATES AND THE TRANSITION TO CHAOS

We start by summarizing a large number of computational runs at moder-

ately supercritical Rayleigh numbers designed to illustrate the types of

secondary instability involved in the transition to chaos. We also show

that in this intermediate Ra region of parameter space between linear in-

stability and full turbulence there are at least two locations where line-

arly stable multiple solutions are found. All the results reported in this

section are for Pr = 1.0 and _ = 2800, to permit comparisons with previously

published works on this problem that have concentrated on these particular
values.

As a point of reference, figure 2 illustrates the behavior of the pri-

mary instability. The linear versions of (I) - (2) have solutions with # and

T proportional to exp(st + iax)sin(nTy) . The growth rates for Pr = 1 are

then given by the quadratic

{ _} _2Ra +k4 +i_ a=0 ,S2 + S 2k 2 + - k2 (ii)

with k2 -n2_ + a2 . From this one can easily determine the critical curve

where Re (s) crosses the imaginary axis. This occurs at a frequency

(12)
= 2k 2

and a critical Rayleigh number

Rac = k6 + _3_
_2 4k' "

(13)

Figure 2a shows that the critical Rayleigh number and wavenumber both in-

crease with _, (as _4/3 and _'/_ respectively, for _ large). At supercritical

conditions the wavenumber of maximum growth is smaller than the critical

wavenumber (e.g. compare figures 2a and 2b for _ = 20000). In our calcula-
tions the x-wavenumber u = m is an integer quantized by the zonal periodi-

city. For Pr = 1.0 and _ = 2800 the critical values are Rac = 30,830 at _c =
m = 9 and n = i. The critical Rayleigh number for n = 2, m = 9 is slightly

bigger (36,254), but as n increases beyond 2 the critical Rayleigh number
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increases rapidly (for n = 3 it is about 67,000) and the associated critical
wavenumber first decreases then increases. Over the whole parameter plane
0 < Ra < I0' , 0 < _ < I0 _ the n = 1 mode has the highest linear growth rate,
although as B becomes very large a wider and wider range of n' s have roughly
the same growth rate. This leads to the important question of finite-amp-
litude meridional (i.e. cross-channel) scale selection.

Nonlinear solutions of (1)-(2) can be found with certain invariant wav-

enumber subsets based on zonal and cross-channel periodicity, and on a

form-preserving shift-reflect symmetry. It is obvious that any solution

with initial zonal wavenumbers confined to m = 0 (the zonal component of

the flow), m = M (the "fundamental wave"), and all zonal harmonics of M,

will not scatter energy into any other zonal wavenumbers. Solutions based

on dividing the zonal periodicity length by some integer M thus preserve

the initial sparse (for M large) spectral occupation matrix, though they

may be unstable to perturbations in longer wavelengths. For example, OB87

study linear perturbations to finite amplitude solutions in an infinite
channel with various values of M around 8, and find supercritical sideband

instabilities with long wave excitation in wavenumbers smaller than one.

Similar comments can be made with respect to the cross-channel periodicity

(for these boundary conditions). However, we do not find stable finite-

amplitude solutions with a fundamental cross-channel periodicity N > i,

though they certainly exist.

Invariant wavenumber sets with only even values of n + m in (9) and (i0)

are also possible (OB87). These are related to motions in the channel that

are preserved under a reflection about the mid-line y = 0.5, and a transla-

tion in x by one half the fundamental M-' periodicity length. In the nonli-
near solutions studied here we label various end-states based on their fun-

damental zonal periodicity M, and whether they have the shift-reflect sym-

metry or not. Asymmetric A-states have both even and odd values of n + m,
while S-states have n + m even only. In addition, it is useful to note that

some states, while filling low wavenumbers, still have peak energies at a

fairly large value of m. Figure 3 shows spectral occupation diagrams for
several different states and illustrates our nomenclature. Finally, every

solution has a companion reflected about the midplane under y _ 1 - y

alone, and/ or shifted by an arbitrary phase in x. The simplified geometry

with uniformly sloping ends does not provide enough asymmetry to determine

the sign of the zonal flow at y - 0, for example, and this, as well as the

eddy positions in x, are determined by initial conditions. The above symme-
tries are often found in such 2-D channel models. Some examples are ordi-

nary sheared convection, Howard and Krishnamurti (1986), baroclinic insta-

bility on the f-plane, Cattaneo and Hart (1990), and thermosolutal convec-

tion, Moore et al. (1991), among others. Because of the _-effect our prob-
lem does not share the left-right x - -x reflection symmetry that these

latter systems have. In addition it is useful to note that the shift-ref-

lect symmetry S-states will be lost in more general geometries such as cyl-

inders, spherical shells, bodies with non-conical ends, etc. As shown

below, S-modes participate in the low Rayleigh number bifurcations, but are
unstable at suitably high forcing.

Figure 4 summarizes the results of about i00 runs with Pr = 1.0 and _ --
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2800. At slightly supercritical values of Ra, the system equilibrates to a
type 9S symmetric state, as expected from linear theory. At a value of Ra
slightly smaller than 35,000 this 9S state becomes unstable to the 9A mode,
consistent with the finite amplitude stability calculations. Or and Busse
(1987) call this symmetry breaking instability a 'bean flow instability",
because the interaction of zonally phase-shifted even and odd cross-chan-
nel modes with the same zonal wavenumber can generate an m -- 0 zonal flow
component. LBG89give examples of multiple equilibria following the bifur-
cation to an asymmetric state. Only one asymmetric type 9A solution was
found in the present computational exercise. The phase shift between the
first and second cross-stream mode of the fundamental zonal wave is 130
degrees at Ra = 35,000. This corresponds to "Solution I" of LBG89, that has
a phase shift of "x = 120°". We attempted to start a 9A solution at Rayleigh

numbers near 35,500 with an initial phase shift of 15 o and relative ampli-

tudes given by LGB89 for their "solution II". However the system typically

evolved to a singly periodic mean flow state with × = 130 o. This corres-

ponds to the vacillating solution I of LGB89. Based on our limited and

potentially protocol-sensitive study of this issue, we suspect that there

is only one asymmetric solution at near critical conditions.

The asymmetric 9A state bifurcates to an amplitude-periodic 8A state

at Ra = 37,500. 0B87 showed that the mean flow secondary state (i.e. 9A)
would almost immediately (upon increasing Ra) suffer a sideband instabil-

ity, but they did not find any tertiary steady convection states. Thus we
believe the 8A limit cycle to be a simple extension of the 9A periodic-state

similar to the so-called vacillatory convection solution calculated by

OB87 for Ra near 40,000 at low resolution (triangular T5 truncation;
retaining only modes with n + m < 6). Because they did not consider finite

aspect ratio channels, the comparison cannot be made more exact. The sim-

ilarities suggest that periodic amplitude modulation of the convection, as
seen in the limited resolution model of LGB89 and the 0(i0') degree of free-

dom calculations of Schnaubelt (1992), is a robust feature of this problem.

However, there is simultaneously a regime of stable steady convection

following the instability of the mean-flow 9A mode, that has, however, the

IA(7) symmetry. This nonlinear fixed-amplitude tertiary travelling wave
state is a result of the sideband instability. The 8A and IA branches coex-

ist for a substantial range of R_. Initial value problems with small IA
perturbations to the 8A state indlcate that it is stable up to Ra = 60,000
which is close to the onset-value for totally desymmetrized chaos. Each

integration at increasing Ra along the IA branch is essentially subject to
a IA perturbation (i.e. the prevlous solution), and so is at least linearly
stable until a transition is made to another type of time dependence or

waveset symmetry.

Previous studies have cited evidence for period-doubling cascades to

chaos. At high resolution, completed cascades of this type are not found.

The 8A state undergoes a single doubling at Ra = 57,500, but then a further
bifurcation to a torus occurs in a narrow window centered on 75,500, before

chaotic motion ensues for Ra > 76,000. Figure 5 illustrates this transi-

tion. Note that the single period-doubling occurs at much higher values of

Ra than that found from highly truncated models with period doubling (Ra =
36,000, LGB89, Lin 90), indicating that previous studies used insufficient
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resolution to explore the actual transition to Chaos. OB87 also found
period doubling in this range, but used somewhat different boundary condi-
tions having free-stress eddies, but periodic zonal flows. It is not known
whether the differences between our calculations and theirs are due to
boundary conditions or to truncation. In our 8A transition, the initial
high frequency mean-flow vacillation is eventually replaced by a low-fre-
quency motion that has its origin in the toroidal bifurcation to modulated
vacillating convection. Figure 6a shows that the limit cycle behavior is
related to a periodicity in the tilt of the convection cells that drives an
oscillating zonal flow. This is largely a result of a periodic phase shift
in x of the even and odd cross-stream fundamental modes, giving rise to a
sort of interference vacillation. At larger Ra there is a nearly-periodic
pairing of like sign vortices on opposite sides of the channel (e.g. figure
6b panels 5 and 13), due to the relative drift of the row of vortices at the
top of the channel with respect to those at the bottom. This is reminiscent
of the truncated solutions of Lin (1990) where rows of n = 2 vortices pro-
pagate relative to each other along opposite walls at modest Ra . Lin pred-
icted that the like-sign vortices would permanently position themselves
near the opposing boundaries as Ra is further increased, in a process that
was called a "double column" instability. The solution in figure 6b might
more appropriately be called an n = 2 differentially-drifting-column (DDC)
state. Similar vacillations were predicted by Schnaubelt (1992) in situa-

tions with curved ends, giving a y-varying _ parameter. He found oscilla-

tory instabilities of steady convection with the DDC signature. The DDC

vacillation appearing here at high Ra does not require sidebands or curved
boundaries for its existence. The intermittent excursions off the torus

(figure 5c) are suggestive of a tangent bifurcation, Physically they seem
to be related to almost periodic pulsations of the zonal flow - convection

system, which, because of small scale high-frequency fluctuations, can

occur irregularly in time.

For completeness we note that the IS state undergoes a similar transi-

tion to chaos, though at lower Ra . Referring to figure 4, the steady 9S
mode first suffers a sideband instability in which the new the spectrum is

dominated by wavenumber m = 9. With increasing R@ the spectrum flattens
out and the flow makes a transition to aperiodlcity at a low Rayleigh

number, R a = 43,750. Figure 7 emphasizes that there is no period doubling,
and the frequency separation in the quasi-periodic states is not large.

Because they are unstable, both the iS and the 8A transition branches are

not physically significant.

For Ra > =62,500 the only stable state is IA(6). The chaotic branch
overlaps with a steady solution in a narrow window between 59,500 and

62,500. The steady solution is dominated by wavenumber 7 and has much

weaker sidebands than the wavenumber 6 dominated chaotic solution at the

same Ra . Figure 8 shows typical streamfunctions and zonal Wavenumber

spectra for these modes. The spatial spectra of the IA chaotic branch,

though dominated by m = 6 near Ra = 60,000, rapidly become filled in at low

wavenumbers as R a increases. We could not track the IA chaotic state back

in Rayleigh number to find its origin. At Ra = 59,500 it loses stability to

a 2A periodic state, that in turn becomes unstable to 8A at slightly lower

Ra •
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4. HIGH RAYLEIGH NUMBER FLOWS

The zonal (m = 0) component of the flow over the regime diagram of

figure 4 does not exceed the eddy velocities and is generally rather small.

It is of interest to explore larger Rayleigh numbers to identify parameter

values where one might get substantial zonal jets. We begin with a cut in

at R a -- 106 , Pr = 1.0 . Some typical streamfunction vs. time images are

shown in figure 9. These solutions are obtained from desymmetrized initial

conditions (type IA), and all but panels a) and b) remain asymmetric.

At B = 0 one recovers steady non-chaotic roll convection dominated by

wavenumber i. A small (O(i0_)) value of _ leads to steady travelling con-

vection, with waves travelling from left to right in response to the

deepening of the channel in y. _'s of this magnitude produce weak mean

flows with space-averaged mean kinetic energy K much less than the eddy

kinetic energy K'. Near _ = 6000 there is a narrow window of hysteresis

between travelling convection with almost-steady amplitude and weak mean

flows connected to the _ = 0 ordinary convection branch, and a chaotic

strong-jet jet solution that is connected to the turbulent B-convection

branch. The hysteresis spans a _ range of several hundred (see also fig.

14). As _ is further increased the dominant wavenumber of the convection

grows, but it remains substantially less than that expected from linear

theory. Figure i0 shows the relation between nonlinear wave selection and

the fastest linearly growing wave for the same conditions. The difference

is biggest at low _ where the flows are most supercritical. The largest

zonal flows are found on the low _ side of the chaotic domain, and in this

region the zonal circulation is quasi-steady. When _ is increased almost-

periodic vacillations of the zonal shear flow and the heat flux across the

channel are observed (figure Ii).

Figure 12 shows total stream and temperature fields (less the

conduction profile), which are typical of flows at extreme R a. The associ-

ated time series of zonal energy, pointwise zonal velocity and heat flux

are shown in figure 13. The zonal flow is buii£ up rapfdly during a period

of violent and small scale (because _ is large) convection, When the Zonal

shear reaches its maximum the convection is suppressed and the zonal jet

relaxes slowly back to low values and the process starts over. The rela-

tively slight aperiodicity of this almost-periodic large scale system

appears due to the irregularity and patchiness of the small scale turbulent

convection that arises when the shear is small. The cycling is consistent

with the idea of mean flow instability and rapid zonal shear grown'as the

convection turns on, followed by the relatively quick suppression of _e

convective plumes When the shear becomes 5oo large (we recall that linear

stability results show stabilization of transverse roll convection by a

strong vertical shear). An important point is that the zonal shear relaxa"

tion time is roughly independent of _ and R a (see figures ii and 13 and

table I), and therefore this turbulent flow vacillation occurs on the vis-

cous [_/p timescale. Once the convection shuts down, the zonal jets decay

on this long time scale. The mechanism for theSe Cycles appears to be d_f-

ferent from the mode-mixing interference vacillations at low R a (i.e. fig.

6b).
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TABLE I
CHARACTERISTICSOF E-CONVECTION

R a Nu-I K K' AU

0.0 5x105 15.1 0 2x106 -

4000 " 7 .i 2 .Sx10 _ 8.7x10 _ 22

4500 " 4.5 1.8x103 5.6xi03 76

4500 " 4.3 1.3x10 _ 9.9x104 702

5000 " 1.9 1 .Ixl0 _ 5.4xl_ 654

1.0xl04 " 1.4 1.5x104 4.0xl04 163

i. 5xlO 4 " 1.0 2.3x10 j 6.3x10' 64

0.0 ixl06 19 .i 0 4.9x106 -

4000 " 16.4 3.5x104 4.2x10 _ 17

6000 " 9 .I 5.6x10' 2 .Ixl06 25

6000 " 5.4 6.2x10 _ 1.6x10 _ 1526

8000 " 1.8 1.9x105 6.9xi04 880

1.5x104 " .77 5.1x104 1.5x104 479

2.0xl04 " .51 2.3x104 7. ixl0' 326

2.8x104 " - 2.0xl0 _ 5.4xi0' 12

2.8x104 5x10 _ 3.67 9.6x104 3.4x10' 224

3.5x104 " 1.59 5.6x105 4 .ixl05 1588

5.0x104 " 1.05 2.4x10 _ 4.4x104 1056

7.5x104 " .47 7.2x104 1.6x104 577

ixl05 " .26 1.4x104 6.3x103 252

4.0xlO 4 ixl0 _ 3.7 1.7x10 _ 7.6x106 315

4.5xlO 4 " 2.3 1.8x106 1.7x106 2839

5.0xl04 " 1.8 1.5x106 1.8x10' 2581

7 .SxlO 4 " .93 6.9x105 i.7x105 1803

1.0xlO 5 " .73 3.3x105 5.4xi04 1264

1.5x10 _ " .33 6.3x104 1.5x104 552

_Nu - I ,,x and time average of w'T' at y=0.5.

K ..global and time average of zonal kinetic energy (m =0.)

K' -'global and time average of eddy kinetic energy (m _ 0).

A U_ -time average of zonal cross-channel velocity difference.

K'K -.space-time average of eddy to zonal kinetic energy production rate.

_" mdom inat_t period of zonal kinetic energy fluctuation.

(shorter run times lead to uncertainties in some lines of the table)

w

K' K T

6.3X104

2.3X104

8.4X10 _ .12

4.2X10 s .12

1.4X105 .12

2.8X104

7.6X10 _ -

2 •IxlO 5 -

3.2X106

1 .ixlO 6 .12

2.7X105 .08

1.2xlO s .08

4.0xl04 .06

2.7X106 .08

2.6X106 .07

1.5X10 _ .12

4 .Ixl05 .09

7.3X104

9.4X105 .07

1 .ixl07 .i0

6.4X106 .i0

3 .Ixl0 _ .08

1.6X10' .07

3 .ixl0 _

Figures 14, 15 and table 1 summarize the situation. As R a increases a

window in _ opens up where large zonal jets can be found. Quasi-steady

zonal currents occur on the low-_ side of the window, while almost periodic

jets occur in the middle. At fixed Ra, increasing _ causes a drop in the

convective flux N u - i, along with a concurrent decrease in the eddy kinetic

energy. The zonal kinetic energy first rises then falls, and the largest

values of the shear AU/D seem to occur when the eddy and zonal kinetic
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energies are roughly the same, especially at h_igh Ra . However, there are
many states with K substantially greater than K' and these occur as _ moves
towards, but is not too close to, the linear stability boundary. Further
discussion follows in section 5. We have not taken the extremely small
steps in B needed to explore the high Rayleigh number _ _ _lin transition in
detail, as simulations of these low-friction motions require high spatial
resolution and small timesteps.

5. DISCUSSION AND CONCLUSIONS

We have studied two-dimensional thermal convection aligned with the

axis of basic rotation in a E-plane channel of aspect ratio 2_ having free

slip sidewalls. The computations had unit Prandtl number. The main conc-
lusions are:

i) The fundamental single-wave state, which arises from the linear in-

stability of the conductive thermal profile for _ less than

 lin = {! 3R} , (14)

equilibrates at wavenumber 9 (18 cells in the zonal direction for _ = 2800).

As the Rayleigh number is increased at fixed 8, this finite-amplitude

steady convection suffers successive secondaryinstabilities to an asymme-

tric (mean flow) steady state, and then to a vacillatorymean flow state at

a slightly lower wavenumber (8). This follows the scenario of Or and Busse

(1987), who first performed linear stability analyses of the finite-ampli-

tude supercritical steady states.

ii) The vacillatorymotion, including only wavenumber 8 and its harmon-

ics, becomes chaotic at about twice the critical Rayleigh number via a

quasi-periodic 2-torus scenario. The two-frequencies seem to result from a

tilted cell interaction and a phase-winding instability of the first two

cross-stream modes. Earlier studies (Linet al. 1989, Lin 1990) that pred-

ict a transition to chaos by period-doubling at about 20 percent supercri-

ticality may be inaccurate due to truncation. Another possible cause for

the difference may berelated tothe finite aspect ratio geometrywithits
associated wavenumber discretization.

lii) Only 1 steady asymmetricformof convection was found at slightly

supercritical Rayleigh number. The zonal phase relationsbetween the first

two cross-streamwavymodes suggest that this state is consistent withthe

"Solution I" weakly-nonlinear perturbation results of Lin et al. 1989. The

absence oftheir "Solution II" maybe a result of our numerical protocol.

iv) For 40,000 < R a < 60,000, and _ = 2800, several linearly stable

finite amplitude states coexist. These include a periodic wavenumber-8

(plus harmonics) state, a periodic wavenumber-2 (plus harmonics) state, and

a steady asymmetric state with all wavenumbers excited. This last mode is
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the most important because of its association with the high Rayleigh number
fully desymmetrized turbulent flows.

v) For Rayleigh numbers up to 107 the most vigorous zonal jets induced

by the convection can be found in parameter space along the long-dash line
of figure 15. This is approximately given by

(15)

For _ < Bv the amplitude of the zonal velocity falls rapidly, and is zero

when B = 0. In this region the motions are weakly chaotic in a band with

slightly less than _v, becoming steady in amplitude for _ less than about

0.5 _v. This latter value is a crude estimate based on a coarse sampling in

this area of parameter space. Along the _v curve the dominant zonal waven-

umber of the convection is one or two, and the zonal flows are quasi-steady

with small but irregular fluctuations associated with the high-frequency
structure in the convection.

For _ > _v the dominant wavenumber of the convection increases and the
zonal flows begin to pulsate on a diffusive timescale. The small scale

convection is highly turbulent, especially at our extreme value of R a = 107 .

However, the oscillation of the zonally averaged quantities is nearly regu-
lar.

Along a curve very crudely given by

= .013Ra (16)

the ratio of the time-averaged zonal kinetic energy to the time-averaged

eddy kinetic energy is a maximum, with values of about 2.5 at Ra = 5x105 and
over 6 at Ra = i0 _. It is doubtful that _m intersects the linear stability

boundary (14) though it is probable that the turbulent pulsating states

occur closer to _lin as Ra is increased beyond i0_. As _ is increased above

Bm at fixed R a the convection shifts to still higher wavenumber and eventu-
ally dies out as the neutral curve (14) is crossed.

If Ra is increased at fixed B (as in section 3), curve (15) is eventually

crossed and the chaotic convection at smaller Ra becomes regular again.
This process is distinct from the relaminarization found in low order

models that give steady convection following an inverse period-doubling

cascade at fixed wavenumber as Ra crosses about 40,000 at _ = 2800 (LGB89).

Here the chaotic high-mean-flow states at B = 2800 die out at Ra = 300,000
after the flow has made many transitions towards wavenumber i. This loss

of turbulence at high Ra is an artifact of the 2-D model, which will break

down if Ra is made too large while _ is held fixed. Such behavior was seen

in the spherical laboratory experiments of Hart et al. 1986 that show
strong 3-dimensional convection in this limit.
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vi) The model appears to be reasonably self-consistent over most of

its parameter range. The basic expansion requires that the Rossby number

be small. The root mean square value of R o over space and time is R o =

G_rms/_ , where _ is the local nondimensional vorticity in the solutions.

As shown in §2 the parameter G is geometrically related to the actual topo-

graphic slope in figure 1 by

G = 2 tan(_)D = 2 co_(8)D =0(i) (17)
L L

for a planetary atmosphere at subtropical latitudes 0 (see also eqn. 8').

Setting G = i, at R a = i0, we find, for example, that Ro falls below one for

> 6000 and below one tenth for _ > 104 .

Horizontal non-divergence of the lowest order velocity field requires
that

1 >> _ = R a _ _ (18)
29U* _ U"

Using time and space averaged values for temperature T and velocity U, this

condition is well satisfied by our solutions. For example, at R a = 5x10'

the RHS of (18) is 0.071 at _ = 4000, decreasing to 0.021 at _ = 20,000.

On a spherical planet thermal winds giving a variation of velocity

along the axis of rotation will be induced by the component of gravity gp
parallel to the rotation axis. Combining this component with the slopes

appropriate to a sphere yields an estimate of the fractional change of vel-

ocity over the depth D be small. This is

E = 2Ra I VTI (19)
_U

since LGgp/gD . = 2Dtan (8)/L • cot (0)L/D = 2. Computations of

_T.VT),/2/_v.v),/2 indicate that the _ is rarely above 1/2 except at special

points where the speed is zero. Thus the computed flows appear approxi-

mately consistent with the model assumptions provided one is in the E-con-

vection regime. We expect some quantitative corrections when ageostrophic

and thermal wind effects are included. At values of _ <= _v the solutions

may be quite unrealistic for situations with G = O(i). However, these

latter motions could be observed in a laboratory centrifugal annulus

experiment with almost horizontal ends (7 _ 0) so that G becomes very
small.

vii) The basic model is too S_plistic for a direct quantitative com-

parison with planetary and stellar atmospheres as it neglects full spheri-

city, compressibility, as well as other potentially important thermody-

namic effects. Nonetheless, it is tempting to speculate that Jovian

dynamics are associated with a turbulent flow having a _ near to _v, and

that the convection zone on the Sun is associated with flow near to _m.

This puts Jupiter in a low-wavenumber eddy state associated with a strong

quasi-steady Zonal flow. The Sun is represented by a higher wavenumber

eddy state with a pulsating zonal flow (e.g. fig. 9c or 9d for Jupiter, fig.

9e or 12 for the Sun). Magalhaes et al. (1990) have deduced the presence of

slow moving zonal wavenumber 9 - ii eddies in thermal images of JUPiter.

They suggest that these motions may--be r0o£ed many SCale_helg-hts below the

cloud deck. On the other hand, surface observations and helioseismology of

r
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the interior of the Sun have not as yet exposed any low wavenumber giant
cells, so we believe that the finer structure high-_ convection may be more

appropriate for this body.

After fixing the geometry and the Prandtl number, the model has two

virtually unknown dimensional parameters, the small-scale eddy viscosity

and the super-adiabatic buoyancy forcing gaAT/D exciting the convection.

Assuming a value of Ra = 107 and Nu = 2, we can obtain an small-eddy diffu-
sion velocity for Jupiter by requiring that the model yield the observed

internal convection flux F of about 5 watts/m 2. The diffusion velocity

,/,

= J (2o)
D _ pCpRaN u J

obtained in this way is relatively insensitive to the various parameters.

Taking Cp = 1.4x104 joules/Kg°K , _ = 1/2000K , g = 20 m/sec 2 , p = 2 Kg/m', and
D = 2x107m, we get _/D = .045 m/sec. Setting G 0.3 and using the rotation

rate for Jupiter we get _ = 48,000. The results from table 1 then give a

dimensional cross-channel zonal velocity difference of about 120 m/sec,

which is roughly the same size as that observed. The model zonal shear

fluctuates by about 15 percent on a timescale of 1.3 years. The zonal kin-

etic energy generation rate, 6.4xI0 _, is about one third of the eddy kinetic

energy generation by buoyancy work RaN u = l.Sx10 _. The former number tran-
slates to a dimensional value of 3x10 TM m_/sec _, which is somewhat smaller

than the values reported from Voyager I of (i - 4)x10 -4 m2/sec , (Ingersoll et

al. 1981). It may be noted that Sorovsky et al. (1982) have argued that the
actual correlation, after accounting for sampling bias, may be considerably

smaller than this latter value. Nonetheless, the model efficiency of

_-convection for generating zonal jets is quite high, with a substantial

fraction of the buoyancy work going in maintenance of the zonal jets.

Carrying out the same procedure for conditions typical of the outer

convection zone of the Sun with D equal to a solar radius gives a very large

viscosity v = 1.3x109 m2/sec. The associated _ = 7500 is below the _-convec-

tion regime at Ra = l0T. If we take a value v = i0' m2/sec, which is about a
third that estimated from surface magnetic feature diffusion and typical

of values used in large eddy models of compressible convection on the Sun

(Gilman and Miller, 1986), then _ = 80,000 and we are in the pulsating tur-
bulence regime. The diffusion velocity is .14 m/sec and the dimensional

zonal cross-channel velocity difference is about 300 m/sec, which is the

observed scale of differential rotation between the equator and high lati-
tudes. More interesting is the pulsation period, which turns out to be 13

years for these parameters. Might almost-periodic shear-convection inter-

actions in a turbulent flow have something to do with the Ii year solar

activity cycle? The demonstration of a dynamical mechanism for producing
oscillations with a similar timescale is intriguing. However, this latter

more realistic value of the viscosity, although yielding reasonable

numbers for the differential rotation rate and the pulsation period, leads

to a convective flux that is too small by a factor of a thousand. Leaving

aside the question of flux partitioning between different transport
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mechanisms and between various represented and non-represented eddy sizes,

it is thought that a Prandtl number considerably smaller than one is more

appropriate for the Sun. Low Prandtl number E-convection forced by thermal

boundary fluxes or internal heating is an area for future study.

With respect to Jovian dynamics, a problem with the model is that it

generates only one zonal shear zone, and multiple jets in y have not yet

been found (though see fig. 6b for some wrinkles). Soward (1977) investi-

gated the dynamics of small but finite-amplitude convection in an inter-

nally heated fluid sphere and concluded that meridional variations should

appear on scales of order _-2/, as _ _ _, which only becomes substantially

less than one at the extreme values of _ in our calculations. It is not

clear how relevant this weakly nonlinear analysis is for the turbulent

regime we are studying. For this situation Rhines (1975) has proposed that

2-D turbulence on a E-plane will cascade energy upscale into zonally symme-

tric modes with y-wavenumbers k*_ = [[3*/2U*rms]'/2 , or equivalently, into

non-dimensional cell sizes I_ -_/Dk*_ = 2J/'_ K' ,/4/_,/2 . Using the data

from table 1 it can be seen that i_ is of order 1 except for those runs with

" _lin where the convection is only weakly turbulent. In order to study

the possibility of multiple jet solutions we need to consider simulations

at even higher R a, perhaps as large as i0 '° . Although the possibility of

attaining flow statistics over a wider range of parameters is appealing,

such simulations will require much higher resolution and very tiny time

steps.

The two-dimensional E-convection model has allowed us to study flow

evolution and equilibration at higher Rayleigh numbers and Taylor numbers

(_ _2), and over much longer time scales, than is possible with a global

eddy-resolving 3-D convection code. However, as computer parallelism and

speed increase, it would be interesting to look for similar turbulent vac-

illation states in three dimensional compressible models of stellar and

planetary atmospheres.
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FIGURE CAPTIONS

Fig. i. Geometry of the equatorial channel model. The channel has width D

and height L. Gravity is assumed perpendicular to the rotation axis.

Fig. 2. Properties of linear instabilities. (a) Critical Rayleigh number

vs. zonal wavenumber (lowest cross-stream mode) for values of

shown. (b) Growth rate Re(s) for various _ at R a = i0' .

Fig. 3. Typical wavenumber spectra of nonlinear solutions. _ = 2800. (a)

Symmetric wavenumber I, R a = 42,500. (b) Asymmetric wavenumber i, R a

-- 75000, with comparable energies .... and moderate wavenumbers.

(c) Asymmetric type 2A(6) with dominant wavenumber 6, R a = 57500. (d)

Asymmetric type 8A, R a = 40000.

Fig. 4. State diagram for _ -- 2800, tracking various wavenumber and symme-

try states vs. Rayleigh number. Each horizontal line represents a

solution branch with F -- steady amplitude travelling waves (fixed

point in energy), L = limit cycle, L2 = period-doubled cycle, T =

two-frequency torus, T2 = period-doubled 2-torus, C = chaos.

Single-tipped arrows denote changes upon increasing Rayleigh number

using the last timestep of the previous solution as the initial condi-

tion. Double-tipped arrows denote evolution upon small amplitude

perturbations (=i percent) with no symmetry.

Fig. 5. Results along the Type 8A branch. _ = 2800. (a) Ra = 57,500. (b) R a

= 75,500. (c) R a = 76,000. (d) R a = 125,000. Vertical columns from

left to right show area-averaged zonal kinetic energy vs. its rate of

change, Poincare' sections of the phase plots, time series of zonal

kinetic energy, and frequency spectra of the times series.

Fig. 6. Eddy (m # 0) streamfunction and zonal velocity vs. time for a) case
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corresponding to Fig. 5a. b) corresponding to Fig. 5d. For this and

all shaded pictures the gray scale spans the range of negative or min-
imum (black), to positive or maximum (white) values.

Fig. 7. Results along the Type IS (unstable) branch. B = 2800. (a) Ra =
43,000. (b) Ra = 43,250. (c) Ra = 43,600. (d) Ra = 43,750. The struc-
ture of the diagram is the same as Fig. 5.

Fig. 8. Total streamfunction and horizontal wavenumber spectra for the

multiple states at Ra = 60,000, B = 2800. (a) The chaotic type IA(6)
mode. (b) the steady amplitude travelling wave IA(7) mode.

Fig. 9. Times series of eddy (m _ 0) streamfunction at Ra = 106 . (a) B = 0.
(b) B = 6000 (ordinary convection branch). (c) B = 6000 (B-convection

branch). (d) B = 8000. (e) B = 20,000. (f) B = 28,000. Coloration spans
the range of negative (black) to zero (red) to positive (white) values.

Fig. i0. Dominant wavenumbers at Ra = 106 . The crosses indicate spectral
peaks, while the squares show the wavenumber of maximum linear

growth rate.

Fig. ii. Variation of space averaged zonal kinetic energy and Nusselt

number with time for the large zonal jet cases from figure 9 at R a =
106 . The Nusselt number is aT/ay at y = 0.

Fig. 12. Pulsating zonal jets and turbulent convection at R a = I0 _ , B =

75,000. Total streamfunction and non-conductive temperature are
illustrated withthe color scale asinfigure 9.

Fig. 13. Time series of total mean kinetic energy andthe pointwise zonal

velocity at y = 0.6667 for the case shown in figure 12. The Nusselt

number here is _vat y = 0. The portions betweenthe vertical dashed

lines are illustrated in figure 12.

Fig. 14. Ratio of time averaged mean flow kinetic energy to time averaged

eddy kinetic energy over the whole channel for the Ra values shown.
The horizontal portions, past the _-cutoff (the short dashed curve),

show the zero-lines for these offset plots. The long-dash curve in-

dicates the transition from ordinary convection with veryweak mean

flows to those with large zonal jets. The narrow window of hyster-

esis inthe transition is illustrated for Ra = 106.

Fig. 15. Qualitative regime diagram showing locations of pure conduction

("stable"), B-convection with large zonal jets, and "ordinary" sta-
tionary or travelling Rayleigh-Benard convection with small or zero

(if B = 0) zonal flows. The asterisk points locate parameters where

the largest zonal jets are found, subject to our fairly coarse parame-

ter space sampling. The time-average cross-channel velocity differ-
ences areindicated.
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